Handling HC-SR04 ranging sensor using linux kernel modules
goal
The goal of this Lab is to build a loadable kernel module using the Yocto build environment that provides access to the HC-SR04 ranging sensor.
prerequisites
To follow this Lab, you need:
1. Raspberry Pi 3 board full;
2. One HC-SR04 ultrasonic ranging sensor;
3. Micro USB cable;
4. 8 GB Micro SD card;
5. A PC provided with Ubuntu Desktop 14.04 LTS, or a virtual machine hosting Ubuntu Desktop 14.04 LTS;
6. A Micro SD card reader attached to the PC/virtual machine;
7. (Optional) Micro HDMI cable.
Introduction
The Raspberry Pi 3 offers a number of I/O accessible through the connectors labeled J8 in the following picture:
	[image: ]



In this Lab, a loadable kernel module is implemented that program GPIO21 as output to be connected to the HC-SR04 Tring input and GPIO20 as input to be connected to the HC-SR04 Echo output.
Furthermore, the HC-SR04 Vcc input shall be connected to the 5V pin on J8, and the HC-SR04 GND shall be connected to any GND pin (e.g., the one on J8).

workplace setup
Assuming you completed the previous lab, move to the directory raspberrypi3 and prepare the build environment:
cd ~/raspberrypi3/
source sources/poky/oe-init-build-env rpi-build
You now have the system ready for building the embedded Linux distribution for the Raspberry Pi 3 board.
Preparing the recipes
In this Lab, we are adding a new device driver to be compiled as a loadable kernel module, as you will have to do in case you are asked to customize the board support package for the Raspberry Pi 3 to support a new I/O device attached to the system.
For this purpose, we will add a new Yocto recipe to the meta-raspberrypi layer. For this purpose, create the directory as follows:
cd ~/raspberrypi3/sources/meta-raspberrypi/recipes-kernel
mkdir -p hcsr04-mod/files
In hcsr04-mod, put a file named hcsr04_1.0.bb with the following content:
	 0:
 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
	DESCRIPTION = "hcsr04 driver"
LICENSE = "GPLv2+"
LIC_FILES_CHKSUM = "file://${BPN}.c;md5=94af90acd77ed5583caa62cbe903e559"

inherit module

PR = "r0"

SRC_URI = "file://Makefile file://${BPN}.c"
S = "${WORKDIR}"


This file describes the property of the recipe, and in particular:
· Line 0 gives a simple description of the recipe purpose;
· Lines 1-2 give the reference to the license under which the recipe is distributed and provide the indication of the license file and its checksum;
· Line 4 indicates that the recipe inherits the properties of the recipes to build kernel modules;
· Line 6 tells for which machine layer the recipe is intended;
· Lines 8 lists the source files needed to build the recipe;
· Line 9 sets the symbol pointing to the working directory used to perform the build operations.
In hcsr04-mod/files, create a file named hcsr04.c with the following content:
	


	#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>

#include <linux/types.h>
#include <linux/kdev_t.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>

#include <linux/gpio.h>

#include <linux/interrupt.h>

#include <linux/kobject.h>
#include <linux/sysfs.h>

#include <linux/time.h>
#include <linux/ktime.h>
#include <asm/delay.h>
#include <linux/delay.h>

#define GPIO_OUT        20                      // GPIO20
#define GPIO_IN         21                      // GPIO21

static dev_t hcsr04_dev;

struct cdev hcsr04_cdev;

static int hcsr04_lock = 0;

static struct kobject *hcsr04_kobject;

static ktime_t rising, falling;

int hcsr04_open(struct inode *inode, struct file *file)
{
    int ret = 0;

    printk( KERN_INFO "hcsr04_dev: %s\n", __func__ );
    if( hcsr04_lock > 0 )
    {
        ret = -EBUSY;
    }
    else
        hcsr04_lock++;

   return( ret );
}
int hcsr04_close(struct inode *inode, struct file *file)
{
    printk( KERN_INFO "hcsr04_dev: %s\n", __func__ );

    hcsr04_lock = 0;

    return( 0 );
}

ssize_t hcsr04_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
    int ret;
    int pulse;

    printk( KERN_INFO "hcsr04_dev: %s\n", __func__ );

    pulse = (int)ktime_to_us( ktime_sub( falling, rising ) );

    ret = copy_to_user( buf, &pulse, 4 );

    return 4;
}

ssize_t hcsr04_write(struct file *filp, const char *buffer, size_t length, loff_t * offset)
{
    printk( KERN_INFO "hcsr04_dev: %s\n", __func__ );

    gpio_set_value( GPIO_OUT, 0 );
    gpio_set_value( GPIO_OUT, 1 );
    udelay( 10 );
    gpio_set_value( GPIO_OUT, 0 );

    while( gpio_get_value( GPIO_IN ) == 0 )
        ;
    rising = ktime_get();

    while( gpio_get_value( GPIO_IN ) == 1 )
        ;
    falling = ktime_get();

    return( 1 );
}
struct file_operations hcsr04_fops = {
    .owner = THIS_MODULE,
    .read = hcsr04_read,
    .write = hcsr04_write,
    .open = hcsr04_open,
    .release = hcsr04_close,
};

static ssize_t hcsr04_show(struct kobject *kobj, struct kobj_attribute *attr,
                      char *buf)
{
    printk( KERN_INFO "hcsr04_dev: %s\n", __func__ );

    return sprintf(buf, "%d\n", ktime_to_us(ktime_sub(falling,rising)));
}

static ssize_t hcsr04_store(struct kobject *kobj, struct kobj_attribute *attr,
                      char *buf, size_t count)
{
    printk( KERN_INFO "hcsr04_dev: %s\n", __func__ );

    return 1;
}

static struct kobj_attribute hcsr04_attribute =__ATTR(hcsr04, 0660, hcsr04_show, hcsr04_store);

static int __init hcsr04_module_init(void)
{
    char buffer[64];
    int ret = 0;

    printk(KERN_INFO "Loading hcsr04_module\n");

    alloc_chrdev_region(&hcsr04_dev, 0, 1, "hcsr04_dev");
    printk(KERN_INFO "%s\n", format_dev_t(buffer, hcsr04_dev));

    cdev_init(&hcsr04_cdev, &hcsr04_fops);
    hcsr04_cdev.owner = THIS_MODULE;
    cdev_add(&hcsr04_cdev, hcsr04_dev, 1);


    if( gpio_request( GPIO_OUT, "hcsr04_dev" ) )
    {
        printk( KERN_INFO "hcsr04_dev: %s unable to get GPIO_OUT\n", __func__ );
        ret = -EBUSY;
        goto Done;
    }
 if( gpio_request( GPIO_IN, "hcsr04_dev" ) )
    {
        printk( KERN_INFO "hcsr04_dev: %s unable to get GPIO_IN\n", __func__ );
        ret = -EBUSY;
        goto Done;
    }

    if( gpio_direction_output( GPIO_OUT, 0 ) < 0 )
    {
        printk( KERN_INFO "hcsr04_dev: %s unable to set GPIO_OUT as output\n", __func__ );
        ret = -EBUSY;
        goto Done;
    }

    if( gpio_direction_input( GPIO_IN ) < 0 )
    {
        printk( KERN_INFO "hcsr04_dev: %s unable to set GPIO_IN as input\n", __func__ );
        ret = -EBUSY;
        goto Done;
    }

    hcsr04_kobject = kobject_create_and_add("hcsr04", kernel_kobj);
    if(!hcsr04_kobject)
    {
        ret = -ENOMEM;
        goto Done;
    }
    ret = sysfs_create_file(hcsr04_kobject, &hcsr04_attribute.attr);
    if( ret )
    {
        printk( KERN_INFO "failed to create the foo file in /sys/kernel/hcsr04\n");
        ret = -ENOMEM;
        goto Done;
    }


Done:
    return ret;
}
static void __exit hcsr04_module_cleanup(void)
{
    printk(KERN_INFO "Cleaning-up hcsr04_dev.\n");

    gpio_free( GPIO_OUT );
    gpio_free( GPIO_IN );

    hcsr04_lock = 0;

    cdev_del(&hcsr04_cdev);
    unregister_chrdev_region( hcsr04_dev, 1 );

    kobject_put( hcsr04_kobject );
}

module_init(hcsr04_module_init);
module_exit(hcsr04_module_cleanup);

MODULE_AUTHOR("Your name");
MODULE_LICENSE("GPL");                      




Finally, in the same directory, place a file name Makefile with the following content:
	0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
	obj-m := hcsr04.o

SRC := $(shell pwd)

all:
       $(MAKE) -C $(KERNEL_SRC) M=$(SRC)

modules_install:
       $(MAKE) INSTALL_MOD_DIR=kernel/drivers/my_mod -C $(KERNEL_SRC) M=$(SRC) modules_install

clean:
       rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
       rm -f Module.markers Module.symvers modules.order
       rm -rf .tmp_versions Modules.symvers


The file describes how the source code shall be built and where the output shall be placed, in particular:
· Lines 0-5 define which is the object module to be created, locate the current directory, and invoke the build command, which refers to the source and kernel source symbols Yocto maintains;
· Lines 7-8 define which operation to perform for installing the loadable kernel module resulting from the compilation. In this example, the object will be installed in the root file system in the /lib/modules/<kernel version>/kernel/drivers/my_mod directory.
· Lines 10-14 define the operation to perform when cleaning the build outputs (i.e., removing the temporary files and the compilation outputs).
Once these operations are completed, you have to tell the machine layer configuration that the new driver is needed. For this purpose, edit the file
 cd ~/raspberrypi3/rpi-build/conf/local.conf
Add the following statement as a last line of the file:
IMAGE_INSTALL_append += "hcsr04"
This line tells Yocto that when building Linux, the newly created device driver shall be built and that it shall be included in the root file system.
Building and deploying the new system
You are now ready to build the new system as follows:
cd ~/raspberrypi3/rpi-build
bitbake -c clean rpi-basic-image
bitbake rpi-basic-image

During the build, the compiler will recognize a discrepancy in the license reference. Copy and paste the suggested reference (“the new md5 checksum is..”) into your hcsr04_1.0.bb file and start the build again.
After a while, a new Micro SD card image would be available, which you can deploy in the Micro SD as follows (assuming the Micro SD is available to the PC as /dev/sdN). Alternatively, use a program of your preference to flash the image.
First, run the:
sudo fdisk -l 
command to determine which device to flash to (plug in and unplug the SD card to determine which device it is). For this example, the SD card is under the name “sdc” (this may be different in your environment). Next, ensure that the device is unmounted. This can be done using the command:
sudo umount /dev/sdc*
Once this is done, the following command can be used to copy the image across to the SD card (substitute any folder names and device names to ensure they are relevant to your specific environment).
sudo dd bs=1M if=/home/user/raspberryPi3/rpi-build/tmp-glibc/deploy/images/raspberrypi3/rpi-basic-image-raspberrypi3.rpi-sdimg of=/dev/sdc
Note that if not done properly, the image being flashed across to the SD card may cause problems when attempting to turn on the board. If this is the case, it may be worth retrying the process again and ensuring that it is done properly or use a flash program to automate the process.
While the SD card is still connected to the development host, use the following lines to navigate to the etc folder on the SD card (assuming the device has now been mounted).
cd media/user/SD_name/etc – Use the ls command to find the name of the SD card in the user folder.
Then, use a terminal text editor to open the shadow file.

sudo vi shadow

Or

sudo gedit shadow

Check that there are no characters between the first two colons in the first line. If there is, remove it so that the first line looks like this:

Root::17728:0:99999:7:::

Exit the text editor by entering :x or simply closing the application!
Running the module
After booting the new Linux system, you can check whether the build process was completed successfully. After logging into the Raspberry Pi 3, you can type the following commands:
root@raspberrypi3:/# ls -la /lib/modules/4.1.21/kernel/drivers/my_mod
drwxr-xr-x    2 root     root          1024 May 15 08:47 .                      
drwxr-xr-x   43 root     root          1024 May 10 12:09 ..                     
-rw-r--r--    1 root     root          9080 May 12 03:02 gpio.ko              
-rw-r--r--    1 root     root         10140 May 15 08:22 hcsr04.ko              
-rw-r--r--    1 root     root          5384 May 11 08:05 hello.ko  
root@raspberrypi3:/#
The directory in the root file system contains hcsr04.ko, which is the kernel object containing the binary code for the loadable kernel module.

You can now insert the module in the kernel as follows:
root@raspberrypi3:/# insmod /lib/modules/4.1.21/kernel/drivers/my_mod/hcsr04.ko
[  143.363069] Loading hcsr04_module                                           
[  143.366466] 243:0
The module is loaded with major number 243 and minor number 0. If you are not connected to the serial console, you can see the messages logged by the module using the dmesg command.
To test the module, you have to first create the associated device file:
root@raspberrypi3:/# mknod /dev/hcsr04 c 243 0
You can now communicate with the module through the Linux command line.
As an example, you can issue the following command, observing the following output:
root@raspberrypi3:/# echo 1 > /dev/hcsr04
[  223.733423] hcsr04_dev: hcsr04_open                                         
[  223.737076] hcsr04_dev: hcsr04_write                                        
[  223.753109] hcsr04_dev: hcsr04_write                                        
[  223.769147] hcsr04_dev: hcsr04_close   
If you have connected the Raspberry Pi 3 to the HC-SR04 ranging sensor, you can read the measured echo pulse duration as follows:
root@raspberrypi3:~# cat /sys/kernel/hcsr04/hcsr04 
[  279.097877] hcsr04_dev: hcsr04_show                                         
11994 
The value 11.994 s corresponding to about 206 cm has been measured with the HC-SR04 sensor resting on a table pointing toward the ceiling in a room 300 cm tall.
In this example, we are using the virtual file system API to trigger the sensor and sysfs to read the measured distance.
You can put an object at different distance with respect to the sensor and validate the correct operations of the module by repeating the trigger operation.
To test the module, we can also write a simple test application called test_hcsr04.c with the following code:
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char **argv)
{	
    char *app_name = argv[0];	
    char *dev_name = "/dev/hcsr04";	
    int fd = -1;	
    char c;	
    int d;


    if( (fd = open(dev_name, O_RDWR)) < 0 ) 
    {
        fprintf(stderr, "%s: unable to open %s: %s\n", app_name, dev_name, strerror(errno));		
        return( 1 );	
    }

    c = 1;
    write( fd, &c, 1 );
    read( fd, &d, 4 );

    printf( "%d: %f\n", d, d/58.0 );

    close( fd );

    return 0;
}
The code shall be built on the host machine, issuing the following command:
arm-linux-gnueabihf-gcc -o test_hcsr04 test_hcsr04.c
The obtained program, test_hcsr04, shall be executed on the Raspberry Pi 3 target, for example, by copying it from the development host onto a USB stick that will be then plugged into the Raspberry Pi 3 USB port.
The test program can either be copied across to the board via the SD card, or it can be executed as follows, after mounting first the USB stick to /media/:
root@raspberrypi3:~# /media/test_hcsr04 
13552: 233.655172
The test application interacts with the driver through the virtual file system: it triggers the sensor and then it reads the measured distance. As we are in the same condition as before, we obtain the same result.
For removing the module, you can act as follows:
root@raspberrypi3:/# rmmod hcsr04
After removing the module, you can verify that the hcsr04 directory is no longer available in /sys/kernel.




[bookmark: _Hlk490059702]post-lab practice
Now you can play your game on your Raspberry Pi 3 board with buttons as controls. To make things more interesting, we are going to utilize the HC-SR04 ranging sensor to control the game. This is to further enhance your practical skills on kernel programming. Also, you may well need to write a program in user space to achieve the ultimate goal of this challenge session.
Q: Amend the test program given in the Lab to send key events according to the output from the HC-SR04 ranging sensor. For instance, moving your hand closer the sensor will invoke LEFT key event and moving further will cause RIGHT key event. You will also need to amend the kernel module for a complete and smooth experience. (Hint: consider the use of uinput)
A:. The program measures and calculates the distance from the sensor to its obstacle; hence, we can easily modify it and send key strokes according to the measured distance. The most important part is how we can generate key events in user space. It appears that uinput is the answer. uinput stands for “user input,” which is a virtual input device that you can find at /dev directory. To enable uinput, simply include <linux/uinput.h> interface in your program.
The example solution is provided in C++ but not too different from the standard C. Here is the completed code:
	0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
	#include <cstdlib>
#include <iostream>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <time.h>
#include <linux/input.h>
#include <linux/uinput.h>

using namespace std;

int SetupUinputDevice()
{
    //  file descriptor for the uinput device
    int fd_uinput_device;
    fd_uinput_device = open("/dev/uinput", O_WRONLY | O_NONBLOCK | O_NDELAY);
    if(fd_uinput_device < 0)
    {
        std::cout << "Error : open file descriptor /dev/uinput : " << strerror(errno) << std::endl; 
        return -1;
    }

    // create and initialise uinput_user_dev struct 
    struct uinput_user_dev dev_key;
    memset(&dev_key, 0, sizeof(uinput_user_dev));
    snprintf(dev_key.name, UINPUT_MAX_NAME_SIZE, "ranging_sensor");
    dev_key.id.bustype = BUS_USB;
    dev_key.id.vendor = 0x01;
    dev_key.id.product = 0x02;
    dev_key.id.version = 1;


    // configure/set key press and release events
    if(ioctl(fd_uinput_device, UI_SET_EVBIT, EV_KEY) < 0)
    {
        std::cout << "Error : ioctl : UI_SET_EVBIT for EV_KEY " << strerror(errno) << std::endl;
        return -1;
    }

    // enable set of key board events
    for(int iEvent=0; iEvent < 254; iEvent++)
    {
        if(ioctl(fd_uinput_device, UI_SET_KEYBIT, iEvent) < 0)
        {
            std::cout << "Error : ioctl : UI_SET_KEYBIT for event ID: " << iEvent << " : " << strerror(errno) << std::endl;
        }
    }

    // enable synchronization events
    if(ioctl(fd_uinput_device, UI_SET_EVBIT, EV_SYN) < 0)
    {
        std::cout << "Error : ioctl : UI_SET_EVBIT for EV_SYN: " << strerror(errno) << std::endl;
        return -1;
    }

    // write the uinput_user_dev structure into the device file descriptor
    if(write(fd_uinput_device, &dev_key, sizeof(uinput_user_dev)) < 0)
    {
        std::cout << "Error : failed to write uinput_user_dev structure into the device file descriptor: " << strerror(errno) << std::endl;
        return -1;
    }

    // Create the end point file descriptor for user input device descriptor.
    if(ioctl(fd_uinput_device, UI_DEV_CREATE) < 0)
    {
        std::cout << "Error : failed to create end point for user input device: " << strerror(errno) << std::endl;
        return -1;
    }

    return fd_uinput_device;
}

int CloseUinputDevice(int fd_dev)
{
    if(ioctl(fd_dev, UI_DEV_DESTROY) < 0)
    {
        std::cout << "Error : ioctl failed: UI_DEV_DESTROY : " << strerror(errno) << std::endl;
        return -1;
    }

    if(close(fd_dev) < 0)
    {
        std::cout << "Error : close device file descriptor : " << strerror(errno) << std::endl;
        return -1;
    }
}

// function that sends key events
int emit(int fd_dev, int event_type, int key_code, int value)
{
    // input_event struct member for input events
    struct input_event key_input_event;
    memset(&key_input_event, 0, sizeof(input_event));

    // set event values
    key_input_event.type = event_type;
    key_input_event.code = key_code;
    key_input_event.value = value;

    if(write(fd_dev, &key_input_event, sizeof(input_event)) < 0)
    {
        std::cout << "Error writing input events to the device descriptor: " << strerror(errno) << std::endl;
        return -1;
    }

    return 0;
}

int main(int argc, char** argv) 
{
    int fd_uinput = SetupUinputDevice();
    sleep(2);
	
    char *app_name = argv[0];	
    const char *dev_name = "/dev/hcsr04";	
    int fd = -1;	
    char c = 1;	
    int time;
    int distance;
	
    if(fd_uinput < 0)
    {
        std::cout << "Error in setup file descriptor for uinput device..." << std::endl;
        return -1;
    }
	

    if( (fd = open(dev_name, O_RDWR)) < 0 ) 
    {
        fprintf(stderr, "%s: unable to open %s: %s\n", app_name, dev_name, strerror(errno));		
        return -1;	
    }

	while (1)
	{		
		write( fd, &c, 1 );
		usleep (10000);
		read( fd, &time, 4 );
		distance = time/58.0;

		// effective distance is within 50 and 15 is the boundary
		if (distance>15 && distance <50)
		{
			emit(fd_uinput, EV_KEY, KEY_RIGHT, 0);
			emit(fd_uinput, EV_SYN, SYN_REPORT, 0);
			emit(fd_uinput, EV_KEY, KEY_LEFT, 1);
			emit(fd_uinput, EV_SYN, SYN_REPORT, 0);
		}
		
		else if (distance <= 15)
		{
			emit(fd_uinput, EV_KEY, KEY_LEFT, 0);
			emit(fd_uinput, EV_SYN, SYN_REPORT, 0);
			emit(fd_uinput, EV_KEY, KEY_RIGHT, 1);
			emit(fd_uinput, EV_SYN, SYN_REPORT, 0);

		}

		else 
		{
			emit(fd_uinput, EV_KEY, KEY_RIGHT, 0);
			emit(fd_uinput, EV_SYN, SYN_REPORT, 0);
			emit(fd_uinput, EV_KEY, KEY_LEFT, 0);
			emit(fd_uinput, EV_SYN, SYN_REPORT, 0);
		}		
	}

    close( fd );
    CloseUinputDevice(fd_uinput);
    return 0;
}
	



· Lines 0-11 include the needed header files containing the function prototypes and the data structure needed to write the program;
· Lines 15-77 define a function to setup the uinput device including exception handling; 
· Line 77-92 define a function to close and clear the uinput device when the program is finished;
· Lines 92-113 define a function to send key events using uinput, which is similar to what you saw in the last challenge session;
· Lines 113-138 define useful variables and set up the uinput device and “hcsr04” sensor with exception handling;
· Lines 138-170 indicate an infinite loop, which keeps writing and reading from the sensor every 0.3 seconds; the distance measured is classified into 3 kinds, those greater than 50 are ignored (meaning your hand is not present nearby, and hence no action); those between 15 and 50 will send 4 successive KEY_LEFT presses; those smaller than 15 will send 4 successive KEY_RIGHT presses;
· Lines 172-175 will free and close the uinput device and the “hcsr04” sensor (although these will never be executed in the example program).
When the program is finished, build the program on your host machine (remember you need g++):
arm-linux-gnueabihf-g++ -o test_hsr04 test_hcsr04.c
Then, the executable can be either copied to the Micro SD card directly, via a USB stick, or using scp.
Now you can pre-test your program; however, it’s not perfect. If you look back to the kernel module provided in the main lab that enables the hcsr04 sensor, in the hcsr04_write function, there are two while loops that keep listening the value from GPIO_IN. In the first while loop, if a pulse is sent but never reflected or reflected with non-detectable strength, then the program will stay in the while loop forever. Although this happens occasionally, if we want to use it as a game controller, then constant reading and writing may well trigger the bug frequently.
To overcome this issue, we shall borrow the concept of a watchdog timer that could bypass the while loop after a certain amount of time. The approach is simply replacing the while loop with a for loop (in the hcsr04.c file):
ssize_t hcsr04_write(struct file *filp, const char *buffer, size_t length, loff_t * offset)
{
    printk( KERN_INFO "hcsr04_dev: %s\n", __func__ );

    gpio_set_value( GPIO_OUT, 1 );
    udelay( 10 );
    gpio_set_value( GPIO_OUT, 0 );

    int i;
    for (i=0; i<1000000; i++)
    {
        if (gpio_get_value( GPIO_IN )==1)
            goto node_1;
    }
    node_1: rising = ktime_get();
    
    for (i=0; i<1000000; i++)
    {
        if (gpio_get_value( GPIO_IN )==0)
            goto node_2;
    }
    node_2: falling = ktime_get();
    gpio_set_value( GPIO_OUT, 0 );
    return( 1 );
}
Note that the upper limit 1000000 of “i” is only a reference. The idea is having the for loop wait for sufficient time until the pulse is reflected back but not too long for human to inspect. Depending on your processing power, you can modify the number accordingly. Then, copy the above code to replace the hcsr04_write function in hcsr04.c.
Now build the image - This should be done with the local.conf file that worked to build core-image-sato, however we should now add:
IMAGE_INSTALL_append += "hcsr04"



Then run:
bitbake -c clean core-image-sato
bitbake core-image-sato 
Once complete, a new Micro SD card image will be available, which you can deploy to the Micro SD as follows (assuming the Micro SD is available to the PC as /dev/sdN). Alternatively, use a program of your preference to flash the image.
First run the:
sudo fdisk -l
command to determine which device to flash to (plug in and unplug the SD card to determine which device it is). For this example, the SD card is under the name “sdc” (this may be different in your environment). Next, ensure that the device is unmounted. This can be done using the command:
sudo umount /dev/sdc*
Once this is done, the following command can be used to copy the image across to the SD card (substitute any folder names and device names to ensure they are relevant to your specific environment).
sudo dd bs=1M if=/home/user/raspberryPi3/rpi-build/tmp-glibc/deploy/images/raspberrypi3/core-image-sato-raspberrypi3.rpi-sdimg of=/dev/sdc
Copy the test_hcsr04 executable across to the board once more, as done earlier in the lab.
Load the kernel module with the following command:
insmod /lib/modules/4.1.21/kernel/drivers/my_mod/hcsr04.ko
While you are loading the kernel module, make sure you remember the major and minor number of it to create the associated device file.
mknod /dev/hcsr04 c 243 0
Finally, navigate to the folder containing the updated test_hcsr04 executable and run:
[bookmark: _GoBack]./test_hcsr04
This should loop the sensor and continually pick up readings - you can now pair this with playing atanks and use it to control the game.
Note: Serial communication (minicom) cannot detect key strokes from the button press/sensor output, and hence the Raspberry Pi 3 board must be connected to a display via Micro HDMI to successfully observe the key events.

[image: ]
image1.png

image2.png

